Subspace-Sparse Representation
نویسندگان
چکیده
Given an overcomplete dictionary A and a signal b that is a linear combination of a few linearly independent columns of A, classical sparse recovery theory deals with the problem of recovering the unique sparse representation x such that b = Ax. It is known that under certain conditions on A, x can be recovered by the Basis Pursuit (BP) and the Orthogonal Matching Pursuit (OMP) algorithms. In this work, we consider the more general case where b lies in a low-dimensional subspace spanned by some columns of A, which are possibly linearly dependent. In this case, the sparsest solution x is generally not unique, and we study the problem that the representation x identifies the subspace, i.e. the nonzero entries of x correspond to dictionary atoms that are in the subspace. Such a representation x is called subspace-sparse. We present sufficient conditions for guaranteeing subspace-sparse recovery, which have clear geometric interpretations and explain properties of subspacesparse recovery. We also show that the sufficient conditions can be satisfied under a randomized model. Our results are applicable to the traditional sparse recovery problem and we get conditions for sparse recovery that are less restrictive than the canonical mutual coherent condition. We also use the results to analyze the sparse representation based classification (SRC) method, for which we get conditions to show its correctness.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملGeometric Conditions for Subspace-Sparse Recovery
Given a dictionary Π and a signal ξ = Πx generated by a few linearly independent columns of Π, classical sparse recovery theory deals with the problem of uniquely recovering the sparse representation x of ξ. In this work, we consider the more general case where ξ lies in a lowdimensional subspace spanned by a few columns of Π, which are possibly linearly dependent. In this case, x may not uniqu...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملImage Segmentation Using Subspace Representation and Sparse Decomposition
Image Segmentation Using Subspace Representation and Sparse Decomposition
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1507.01307 شماره
صفحات -
تاریخ انتشار 2015